For Veterinary use only Customer and Technical Service 1-800-822-2947

May, 2006 PN: 500-7113 Rev: C © 2001, Abaxis, Inc., Union City, CA 94587

1. Intended Use

The VetScan[®] Large Animal Profile reagent rotor, used with the VetScan Whole Blood Analyzer, utilizes dry and liquid reagents to provide *in vitro* quantitative determinations of albumin (ALB), alkaline phosphatase (ALP), aspartate aminotransferase (AST), calcium (CA⁺⁺), creatine kinase (CK), gamma glutamyl transferase (GGT), globulin*(GLOB), magnesium (MG), inorganic phosphorus (PHOS), total protein (TP) and urea nitrogen (BUN) in heparinized whole blood, heparinized plasma, or serum.¹

* Calculated Value

2. Summary and Explanation of Tests

NOTE: Bovine samples should be run as "Other" species (animal type) when running the Large Animal Profile Rotor. The albumin (ALB) method has bovine specific calibration factors, which are stored in this key function. Please refer to the VetScan Operator's Manual for additional information.

The VetScan Large Animal Profile reagent rotor and the VetScan Whole Blood Analyzer comprise an *in vitro* diagnostic system that aids the veterinarian in diagnosing the following disorders:

Albumin	Liver and kidney disease		
Alkaline phosphatase	Liver, bone, parathyroid and intestinal diseases		
Aspartate aminotransferase	Liver disease including hepatitis and viral jaundice; shock		
Calcium	Parathyroid, bone and chronic renal diseases; tetany		
Creatine Kinase	Myocardial infarction, progressive muscular dystrophy, dermatomyositis, convulsions, heart disease, hypothyroidism, severe exercise, intramuscular injection, physical inactivity, and decreased muscle mass		
Gamma glutamyl transferase	Liver disease, primary and secondary liver tumors		
Magnesium	Kidney disease and malnutrition		
Phosphorus	Kidney disease, hypoparathyroidism and nutritional disorders		
Total protein	Liver, kidney, bone marrow diseases; metabolic and nutritional disorders		
Urea Nitrogen	Renal and metabolic diseases		

As with any diagnostic test procedure, all other test procedures including the clinical status of the patient should be considered prior to final diagnosis.

3. Principles of Procedure

Albumin (ALB)

Dye binding techniques are the most frequently used methods for measuring albumin. Bromcresol green (BCG) is the most commonly used of the dye binding methods but may over-estimate albumin concentration, especially at the low end of the normal range.²

Bound albumin is proportional to the concentration of albumin in the sample. This is an endpoint reaction that is measured as the difference in absorbance between 600 nm and 550 nm.

Alkaline Phosphatase (ALP)

The Abaxis procedure is modified from the American Association of Clinical Chemistry $(AACC)^3$ and the International Federation of Clinical Chemistry (IFCC)⁴ methods, which uses ρ -NPP as a substrate and a metal-ion buffer. In this reaction, ALP hydrolyzes ρ -NPP in a metal ion buffer and forms ρ -nitrophenol and phosphate.

$$\rho$$
-Nitrophenyl Phosphate \xrightarrow{ALP} ρ -Nitrophenol + Phosphate Zn^{2+}, Mg^{2+}

The amount of ALP in the sample is proportional to the rate of increase in absorbance at 405 nm.

Aspartate Aminotransferase (AST)

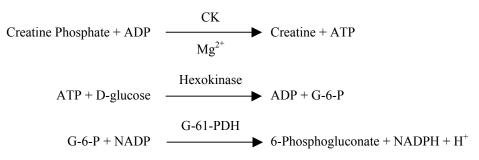
The Abaxis AST method is a modification of the IFCC reference method.^{5,6} This method catalyzes the reaction of L-aspartate and α -ketoglutarate into oxaloacetate and L-glutamate. Oxaloacetate is converted to malate and NADH is oxidized to NAD⁺ by the catalyst MDH.

The rate of absorbance change to 340/405 nm caused by the conversion of NADH to NAD⁺ is directly proportional to the amount of AST present in the sample.

Calcium (Ca⁺⁺)

Calcium in the patient sample binds with Arsenazo III to form a calcium-dye complex.^{7,8}

 Ca^{2+} + Arsenazo III \frown Ca^{2+} + -Arsenazo III Complex


The endpoint reaction is monitored at 405 nm, 467 nm, and 600 nm. The amount of calcium in the sample is proportional to the absorbance.

Creatine Kinase (CK)

Creatine Kinase catalyzes the reversible phosphorylation of creatine by adenosine triphosphate (ATP).9

The CK measurement procedure used by Abaxis is a modified version of the IFCC.¹⁰ Key modifications are sample volume fraction, buffer and temperature. N-acetyl cysteine (NAC) has been added to reactivate the CK.¹¹ Magnesium is used as a cofactor for both CK and hexokinase. EDTA has been added as a stabilizer for NAC and for the removal of various cations, such as calcium and iron, that inhibit CK. P¹, P⁵-di (adenosine-5')pentaphosphate and adenosine monophosphate (AMP) have also been added to inhibit adenylate kinase, another skeletal muscle and erythrocyte enzyme that reacts with the substrates used to measure CK.

Creatine Kinase catalyzes the formation of creatine and adenosine triphosphate (ATP) from creatine phosphate P^1 , P^5 -di (adenosine 5')penta phosphate (ADP) at pH 6.7. With hexokinase as a catalyst, ATP reacts with D-glucose to form ADP and D-glucose-6-phosphate (G-6-P), which is reacted with nicotinamide adenine dinucleotide phosphate (NADP) in the presence of glucose-6-phosphate dehydrogenase (G-6-PDH) to produce G-6-P and NADPH.

The formation of NADPH is measured as a change in absorbance at 340 nm relative to 405 nm. This absorbance change is directly proportional to creatine kinase activity in the sample.

Gamma Glutamyl Transferase (GGT)

Abaxis has modified the IFCC method which uses the L- γ -glutamyl-3-carboxy-4-nitroanilide and glycylglycine¹² as the other substrate¹³ to react at 37° C. The addition of sample containing gamma glutamyl transferase to the substrates L- γ -glutamyl-3-carboxy-4-nitroanilide and glycylglycine (gly-gly) causes the formation of L- γ -glutamyl-glycylglycine (glu-gly-gly) and 3-carboxy-4-nitroaniline.

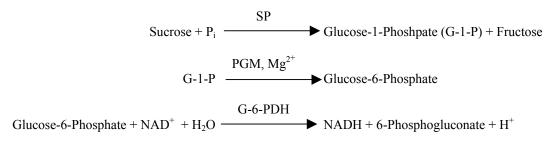
$$GGT$$

L- γ -glutamyl-3-carboxy-4-nitroanilide + Gly-gly \longrightarrow Glu-gly-gly + 3-carboxy-4-nitroaniline

The absorbance of this rate reaction is measured at 405 nm. The production of 3-carboxy-4-nitroaniline is directly proportional to the GGT activity in the sample.

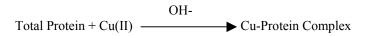
Magnesium (MG)

The hexokinase activation method for magnesium is the best fit system in terms of sensitivity, precision and accuracy.¹⁴


The enzymatic magnesium method can be written as follow:

Glucose + ATP
$$\xrightarrow{\text{Hexokinase}}$$
 Glucose-6-Phosphate + ADP
 Mg^{2^+} $\xrightarrow{\text{G-6-PDH}}$ NADPH + 6-Phosphogluconate + H⁺

The rate limiting reaction is the hexokinase reaction. Magnesium from serum activates hexokinase, which in turn catalyzes the breakdown of glucose to form glucose-6-phosphate (G-6-P) and ADP. Glucose-6-phosphate reacts with NADP⁺ to form NADPH and 6-phosphogluconate in the presence of glucose-6-phosphate dehydrogenase (G-6-PDH). This is a first-order rate reaction. Magnesium concentration is determined by measuring the increase in absorbance of NADPH at 340 nm.


Phosphorus (PHOS)

The most applicable enzymatic method for the Abaxis system uses sucrose phosphorylase coupled through phosphoglucomutase (PGM) and glucose-6-phosphate dehydrogenase (G6PDH).^{15,16} Using the enzymatic system for each mole of phosphorus present in the sample, one mole of NADH is formed. The amount of NADH formed can be measured as an endpoint at 340 nm.

Total Protein (TP)


In the biuret reaction, the protein solution is treated with cupric [Cu(II)] ions in a strong alkaline medium. Sodium potassium tartate and potassium iodide are added to prevent the precipitation of copper hydroxide and the auto-reduction of copper, respectively.¹⁷ The Cu(II) ions react with peptide bonds between the carbonyl oxygen and amide nitrogen atoms to form a colored Cu-Protein complex.

The amount of total protein present in the sample is directly proportional to the absorbance of the Cu-Protein complex. The total protein test is an endpoint reaction and the absorbance is measured as the difference in absorbance between 550 nm and 850 nm.

Urea Nitrogen (BUN)

A coupled-enzymatic reaction is used by the Abaxis system. In this reaction, urease hydrolyzes urea into ammonia and carbon dioxide.¹⁸ Upon combining ammonia with 2-oxoglutarate and reduced nicotinamide adenine dinucleotide (NADH), the enzyme glutamate dehydrogenase (GLDH) oxidizes NADH to NAD⁺.

The rate of change of the absorbance difference between 340 nm and 405 nm is caused by the conversion of NADH to NAD^+ and is directly proportional to the amount of urea present in the sample.

4. Principle of Operation

See the VetScan[®] Chemistry Analyzer Operator's Manual, for the Principles and Limitations of the Procedure.

5. Description of Reagents

Reagents

Each VetScan Large Animal Profile reagent rotor contains dry test specific reagent beads. A dry sample blank reagent (comprised of buffer, surfactants, excipients, and preservatives) is included in each reagent rotor for use in calculating concentrations of ALP, AST, CK, GGT, and urea nitrogen (BUN). A dedicated sample blank is included in the rotor to calculate the concentration of total protein levels. Each reagent rotor also contains a diluent consisting of surfactants and preservatives.

Table 1: Reagents

Components	Contents
Albumin Reagent	
Bromcresol purple	2 μg
Buffer, surfactants, experipients and preservatives	- 10
Alkaline Phosphatase Reagent	
Magnesium chloride	3 μg
Zinc sulfate	3 μg
ρ-NPP	56 μg
Buffers, surfactants and excipients	
Aspartate Aminotransferase Reagent (AST)	
L-aspartic acid	426 μg
Lactate dehydrogenase (LDH) (microbial)	0.03 U
ß-nicotinamide adenine dinucleotide, reduced (NADH)	5 µg
Malate dehydrogenase (MDH) (porcine heart)	0.01 μg
α-ketoglutarate	28 μg
Buffers, surfactants, excipients and perservatives	-~ 4P
Calcium Reagent	
Arsenazo III, sodium salt	3 μg
Buffers, surfactants and excipients	- 10
Creatine Kinase Reagent	
Adenosine diphosphate	31 µg
Adenosine monophosphate	33 µg
P ¹ , P ⁵ -di(adenosine-5')pentaphosphate	0.2 µg
Magnesium Acetate, Tetrahydrate	69 μg
Hexokinase	95904 U
Glucose-6-phosphate dehydrogenase	79920 U
NADP Sodium Salt	104 µg
EDTA, disodium	12 μg
N-acetyl cysteine	52 μg
Phosphocreatine	122 μg
Buffer, surfactants, excipients and preservatives	10
Gamma Glutamyl Transferase	
Glycylgycine	317 μg
L-glutamic acid γ -(3-carboxy-4-nitroanilide)	30 μg
Buffer, surfactants, excipients and preservatives	
Magnesium	
EDTA, disodium	0.00032 mg
NADP, sodium	0.0296 mg
Hexokinase	0.0120 U
Glucose-6-phosphate dehydrogenase	0.0220 U
Phosphorus	
NAD (free acid)	0.043 mg
Magnesium Acetate, Tetrahydrate	0.007 mg
Glucose-1,6-diphosphate	0.001 mg
Glucose-6-phosphate dehydrogenase	0.023 U
Phosphoglucomutase (rabbit)	0.035 U
1 nosphograeonnatase (rabbit)	

Table 1: Reagents (continued)

Components	Contents	
Total Protein Reagent		
Sodium potassium tartrate	343 µg	
Cupric sulfate	134 µg	
Potassium iodide	28 µg	
Surfactants, excipients and perservatives		
Total Protein Blank		
Sodium potassium tartate	343 µg	
Potassium iodide	28 µg	
Surfactants, excipients and perservatives	10	

Warnings and Precautions

- For *in vitro* Diagnostic Use
- The diluent container in the reagent rotor is automatically opened when the analyzer drawer closes. A rotor with an opened diluent container can not be re-used. Ensure that the sample or control has been placed into the rotor before closing the drawer.
- Reagent beads may contain acids or caustic substances. The operator does not come into contact with the reagent beads when following the recommended procedures. In the event that the beads are handled (e.g., cleaning up after dropping and cracking a reagent rotor), avoid ingestion, skin contact, or inhalation of the reagent beads.
- Reagent beads and diluent contain sodium azide which may react with lead and copper plumbing to form highly explosive metal azides. Reagents will not come into contact with lead and copper plumbing when following recommended procedures. However, if the reagents do come into contact with such plumbing, flush with a large volume of water to prevent azide buildup.

Instructions for Reagent Handling

Reagent rotors may be used directly from the refrigerator without warming. Do not allow the rotors to remain at room temperature longer than 48 hours. Open the sealed foil pouch and remove the rotor being careful not to touch the bar code ring located on the top of the reagent rotor. Use according to the instructions provided in the VetScan System Operator's Manual. A rotor not used within 20 minutes of opening the pouch should be discarded. Rotors in opened pouches can not be placed back in the refrigerator for use at a later time.

Storage

Store reagent rotors in their sealed pouches at 2-8° C (36-46° F). Do not expose opened or unopened rotors to direct sunlight or temperatures above 32° C (90° F). To use reagent rotors, remove the rotors from their sealed foil pouches from the refrigerator. Ensure that the cumulative time that the rotors are unrefrigerated (in their sealed pouches) does not exceed 48 hours. Open the pouch and remove the rotor just prior to use.

Indications of Reagent Rotor Instability or Deterioration

- All reagents contained in a reagent rotor, when stored as described above, are stable until the expiration date printed on the rotor pouch. Do not use a rotor after the expiration date. The expiration date is also encoded in the bar code printed on the bar code ring. An error message will appear on the VetScan Whole Blood Analyzer display if the reagents have expired.
- A torn or otherwise damaged pouch may allow moisture to reach the unused rotor and adversely affect reagent performance. Do not use a rotor from a damaged pouch.
- After opening the pouch, examine the desiccant packet that is included with the reagent rotor. A blue strip on the back of the desiccant packet indicates that the correct relative humidity has been maintained in the pouch. A pink strip means the rotor has been exposed to excess moisture in the pouch (e.g. through a puncture hole and the rotor should **not** be used).

6. Instrument

See the VetScan System Operator's Manual for complete information on using the analyzer, including installation, performance specifications, operational precautions and limits, service and maintenance.

7. Sample Collection and Preparation

The minimum required sample size is ~90 μ L of heparinized whole blood, heparinized plasma, serum or serum control. The reagent rotor sample chamber can contain up to 120 μ L of sample.

- Specimen collected in a heparinized micropipette should be dispensed into the reagent rotor **immediately** following sample collection.
- Use only lithium heparin (green stopper) evacuated specimens collection tubes for whole blood or plasma samples. Use no-additive (red stopper) evacuated specimen collection tubes or serum separator tubes (red or red/black stopper) for serum samples.
- Whole blood samples obtained by venipuncture must be homogenous before transferring a sample to the reagent rotor. Gently invert the collection tubes several times just prior to sample transfer. Do **not** shake the collection tube. Shaking can cause hemolysis.
- The test must be started within 10 minutes of transferring the sample into the reagent rotor.
- Whole blood venipuncture samples should be run within 60 minutes of collection.¹⁹ The sample may be separated into plasma or serum and stored in capped sample tubes at 2-8° C (36-46° F) if the sample can not be run within 60 minutes.

Known Interfering Substances

- The only anticoagulant recommended for use with the VetScan Whole Blood Analyzer is lithium heparin.
- Physical interferents (hemolysis, icterus, and lipemia) cause changes in the reported concentrations of some analytes. The sample indices are printed on the bottom of each result card to inform the operator about the levels of interferents present in each sample. The VetScan Whole Blood Analyzer suppresses any results that are affected by >10% interference from hemolysis, lipemia, or icterus. "HEM", "LIP", "ICT", respectively is printed on the result card in place of the result.
- Creatine kinase is inactivated both by bright daylight and by increasing specimen pH owing to loss of carbon dioxide. Accordingly, specimens should be stored in the dark in tightly closed tubes.²⁰

8. Procedure

Materials Provided

• One VetScan[®] Large Animal Reagent Rotor

Materials Required but not Provided

• VetScan Whole Blood Chemistry Analyzer

Test Parameters

The VetScan[®] System operates at ambient temperatures between 15° C and 32° C (59-90° F). The analysis time for each VetScan[®] Large Animal Reagent Rotor is less than 14 minutes. The analyzer maintains the reagent rotor at a temperature of 37° C (98.6° F) over the measurement interval.

Test Procedure

The complete sample collection and step-by-step operating procedures are detailed in the VetScan System Operator's Manual.

Calibration

The VetScan Whole Blood Analyzer is calibrated by the manufacturer before shipment. The barcode printed on the barcode ring provides the analyzer with rotor-specific calibration data. Please see the VetScan System Operator's Manual.

Quality Control

Controls may be run periodically on the VetScan Whole Blood Analyzer to verify the accuracy of the analyzer. Abaxis recommends that a serum-based commercially available control be run. Reagent rotors used for controls should be prepared the same as for patient samples. See the VetScan System Operator's Manual to run controls.

9. Results

The VetScan Whole Blood Analyzer automatically calculates and prints the analyte concentrations in the sample. Details of the endpoint and rate reaction calculations are found in the VetScan System Operator's Manual.

Interpretation of results is detailed in the VetScan Operator's Manual. Results are printed onto result cards supplied by Abaxis. The result cards have an adhesive backing for easy placement in the patient's files.

10. Limitations of Procedure

General procedural limitations are discussed in the VetScan Systems Operator's Manual.

- If a result for a particular test exceeds the assay range, the sample should be analyzed by another approved test method or sent to a referral laboratory. Do **not** dilute the sample and run it again on the VetScan Whole Blood Analyzer.
- Samples with hematocrits in excess of 62-64% packed red cell volume may give inaccurate results. Samples with high hematocrits may be reported as hemolyzed. These samples may be spun down to get plasma then re-run in a new reagent rotor.

11. Expected Values

These normal ranges are provided as a guideline. The most definitive normal ranges are those established for your patient population. Test results should be interpreted in conjunction with the patient's clinical signs.

Analyte	Concentration
ALB_BCG	2.5–3.8 g/dL (25–38 g/L)
ALP	23–135 U/L
AST	66–211 U/L
CA^{++}	7.9–9.6 mg/dL (1.97–2.39 mmol/L)
СК	83–688 U/L
GGT	12–48 U/L
GLOB*	4.0–5.5 g/dL (40–55 g/L)
MG	1.7-2.9 mg/dL (0.70 - 1.19 mmol/L)
PHOS	(4.1-9.2 mg/dL (1.3-3.0 mmol/L))
ТР	6.6–9.3 g/dL (66–93 g/L)
BUN	6–20 mg/dL (2.14–7.14 mmol urea /L)
*Calculated Value	

Table 2: Bovine Reference Intervals

12. Performance Characteristics

Linearity

The chemistry for each analyte is linear over the dynamic range listed below when the VetScan[®] System is operated according to the recommended procedure (see the VetScan System Operator's Manual).

Table 3: VetScan Dynamic Ranges

Analyte	Dynamic Ranges		
	Common Units	SI Units	
ALB_BCG	1–6.5 g/dL	10–65 g/L	
ALP	5–2400 U/L	5–2400 U/L	
AST	5–2000 U/L	5–2000 U/L	
CA++	4–16 mg/dL	1.0-4.0 mmol/L	
СК	5–14000 U/L	5–14000 U/L	
GGT	5–3000 U/L	5–3000 U/L	
GLOB*	1–11 g/dL	10–110 g/L	
MG	0-8 mg/dL	0-3.29 mmol/L	
PHOS	0–20 mg/dL	0–6.46 mmol/L	
TP	2–14 g/dL	20–140 g/L	
BUN	2-180 mg/dL	0.7-64.3 mmol urea/L	

*Calculated Value

Precision

Precision studies were conducted using the NCCLS EP5-A Guidelines. Results for within-run and total precision were determined by testing bi-level controls. Controls were run in duplicate twice each day for 20 days over a four week period. Precision was determined using Moni-trol[®] Level 1 and Level 2 Chemistry Controls (Dade International, Inc.). Results of the precision studies are shown in Table 4.

Table 4: Precision

Analyte		Within-Run (n=80)	Total (n=80)	
Albumin-BCG (ALB, g/dL Control 1)			
	Mean	4.2	4.2	
	SD	0.06	0.08	
	%CV	1.4	1.9	
Control 2	76C V	1.4	1.9	
	Mean	2.5	2.5	
	SD	2.5 0.04	2.5 0.07	
	%CV	1.5	3.0	
Alkaline Phosphatase (AL)	P, U/L)			
Control 1	N	<i>((</i>	<i>()</i>	
	Mean	65	65	
	SD	4.4	4.7	
	%CV	6.7	7.3	
Control 2				
	Mean	277	277	
	SD	9.7	10.3	
	%CV	3.5	3.7	
Aspartate Aminotransfera Control 1	se (AST, U/L)			
	Mean	40	40	
	SD	1.6	3.0	
	%CV	3.9	7.5	
Control 2				
	Mean	124	124	
	SD	2.1	3.2	
	%CV	1.7	2.6	

Analyte		Within-Run	Total	
		(n=80)	(n=80)	
Calcium (Ca ⁺⁺ , mg/dL)				
Control 1				
	Mean	10.4	10.4	
	SD	0.5	0.5	
	%CV	4.4	4.5	
Control 2	,			
	Mean	8.5	8.5	
	SD	0.3	0.3	
	%CV	4.1	4.1	
	70C V	7.1	7.1	
Gamma Glutamyl Transferase	e (GGT, U/L)			
Control 1	Maan	16	16	
	Mean	16	16	
	SD V/CV/	1.2	1.3	
	%CV	7.6	8.0	
Control 2				
	Mean	63	63	
	SD	1.3	1.3	
	%CV	2.0	2.0	
	/ UC Y	2.0	2.0	
Globulin (GLOB, g/dL)				
Control 1				
	Mean	3.2	3.2	
	SD	0.13	0.14	
	%CV	4.1	4.4	
Control 2				
	Mean	2.0	2.0	
	SD	0.07	0.07	
	%CV	3.5	3.5	
	/ UC V	5.0	5.5	
Magnesium (MG, mg/dL)				
Control 1	Mean	4.9	4.9	
	SD	0.07	0.07	
	SD %CV	1.4	1.4	
Control 2	70U V	1.4	1.4	
Control 2	Maan	2.0	2.0	
	Mean			
	SD	0.04	0.04	
	%CV	2.0	2.1	
Phosphorus (PHOS, mg/dL) Control 1				
	Mean	6.9	6.9	
	SD	0.2	0.2	
	%CV	2.2	2.6	
Control 2	/001	2.2	2.0	
	Mean	3.4	3.4	
	SD	0.1	0.2	
	%CV	4.1	4.9	
	/00 1	1.1	1.2	

Analyte		Within-Run	Total	
·		(n=80)	(n=80)	
Total Protein (TP, g/dL)				
Control 1				
	Mean	7.3	7.3	
	SD	0.07	0.07	
	%CV	0.9	1.0	
Control 2				
	Mean	4.5	4.5	
	SD	0.04	0.06	
	%CV	1.0	1.4	
Urea Nitrogen (BUN, mg/dL)				
Control 1				
	Mean	12	12	
	SD	0.4	0.6	
	%CV	3.4	5.4	
Control 2				
	Mean	45	45	
	SD	2.5	2.8	
	%CV	5.5	6.2	

Correlation

Field studies were conducted at a veterinary medicine teaching hospital. Heparinized bovine whole blood and serum samples were analyzed by the VetScan Whole Blood Analyzer and a comparative method. Whole blood and serum samples were grouped together for data analysis. Representative correlation statistics are shown in Table 5.

Table 5: Correlation of VetScan Analyzer Methods in the Large Animal Profile Rotor with Comparative Methods

Albumin (g/dL)		
	Correlation	0.74
	Slope	0.80
	Intercept	0.28
	Sample Range	2.4-4.0
	N	126
	Comparative Method	Bayer Diagnostics BCG Reagent
ALP (U/L)		
	Correlation	0.97
	Slope	0.83
	Intercept	7
	Sample Range	13-136
	N	126
	Comparative Method	Synermed IFCC – ρ -nitrophenol phosphate
AST (U/L)		
	Correlation	0.94
	Slope	0.89
	Intercept	-0.58
	Sample Range	68-262
	N	126
	Comparative Method	Synermed IFCC modified

Calcium (mg/dL)		
	Correlation	0.89
	Slope	0.78
	Intercept	0.66
	Sample Range	5.2-9.8
	Ν	126
	Comparative Method	Randox Laboratories Arsenazo III
GGT (U/L)	Completion	0.07
	Correlation	0.97
	Slope Intercept	1.13 0. 7
	-	7-54
	Sample Range N	126
	Comparative Method	Synermed Modified Szasz
	Comparative Method	Synemica Woaniea Szasz
GLOB (g/dL)		
	Correlation	0.94
	Slope	0.97
	Intercept	1.1
	Sample Range	3.1-6.8
	Ν	126
	Comparative Method	N/A (Calculated)
MG (mg/dL)		
(ing/u2)	Correlation	0.98
	Slope	1.09
	Intercept	-0.1
	Sample Range	1.2-4.2
	N	126
	Comparative Method	Bayer Diagnostics Xylidyl
Phosphorus (mg/dL)		0.00
	Correlation	0.99
	Slope	1.06
	Intercept	-0.5
	Sample Range	1.9-9.7
	N Comporative Method	126 Sigma modified unreduced
	Comparative Method	Sigma modified unreduced
TP (g/dL)		
	Correlation	0.98
	Slope	1
	Intercept	0.5
	Sample Range	6-10
	Ν	126
	Comparative Method	Bayer Diagnostics Biuret Reagent
BUN (mg/dL)		
2 01 ((ing (ing)	Correlation	0.98
	Slope	0.99
	Intercept	1.4
	Sample Range	6-25
	N	126
	Comparative Method	Sigma Modified Talke & Shubert
	T	2

13. Bibliography

1. Howe PE. 1921. The used of sodium sulfate as the globulin precipitant in the determination of protein in blood. J Biol Chem 49:93-107.

2. Webster D, AHC Bignell, EC Atwood. An assessment on the suitability of bromocresol green for the determination of serum albumin. Clin Chim Acta 1974;53:101-108.

3. Tietz NW, CA Burtis, P Duncan, et al. A reference method for measurement of alkaline phosphatase activity in human serum. Clin Chem 1983;29:751-61.

4. Bowers, GN Jr, HU Bergmeyer, et al. IFCC methods for the measurement of catalytic concentration of enzymes. Part I. General considerations concerning the determination of the catalytic concentration of an enzyme in the blood serum or plasma of man. Clin Chem Acta 1974;98:163F-74F.

5. Bergmeyer, HU, GN Bowers Jr, et al. Provisional recommendations on IFCC methods of catalytic concentrations of enzymes, Part 2. IFCC method for aspartate aminotransferase. Clin Chem 1977;23: 887-99.

6. Bergmeyer, HU, M Horder, et al. Provisional recommendations on IFCC methods for the measurement of catalytic concentrations of enzymes. Part 2. Revised IFCC method for aspartate aminotransferase. Clin Chem 1978;24: 720-1.

7. Kessler G, M Wolfman. An Automated procedure for the simultaneous determination of calcium and phosphorus. Clin Chem 1964;10: 686-703.

8. Michaylova V, P Ilkova. Photometric determination of micro amounts of calcium with arsenazo III. Anal Chim Acta 1971;53: 194-8.

9. Tanzer MI, Gilvarg C. Creatine and Creatine Kinase Measurement. J Biol Chem 1959;234: 3201-4.

10. Expert Panel On Enzymes, Committee Of Standards (IFCC). Approval Recommendations Of IFCC Methods For The Measurement Of Catalytic Concentrations Of Enzymes, Part 1. General Considerations. Clin Chim Acta, IFCC Sections: 1979; 98:163-74.

11. Committee On Enzymes Of The Scandinavian Society For Clinical Chemistry And Clinical Physiology. Recommended Method For The Determination Of Creatine Kinase In Blood. Scand J. Clin Lab Invest 1976;36: 711-23.

12. Goldbarg JA, OM Friedman, EP Pineda, et al. The colorimetric determination of γ -glutamyl transpeptidase with a synthetic substrate. Arch Biochem Biophys 1960;91: 61-70.

13. Shaw LM, JH Stromme, JL London, et al. IFCC methods for the measurement of catalytic concentration of enzymes. Part 4 IFCC method for γ -glutamyl-transferase. J Clin Chem Clin Biochem 1983;21:633-46.

14. Tabata M, Kido M, Totani M, et al. Direct Spectrophotmetry of Magnesium in Serum after Reaction with Hexokinase and Glucose-6-phosphate-Dehydrogenase. Clin Chem 1985; 31:703-5.

15. Schulz DW, Passonneau JV, Lowry OH. An Enzymic Method for the Measurement of Inorganic Phosphate Determination Anal Biochem 1967;19:300-14.

16. Tedokon, M Suzuki, K Kayamori, et al. Enzymatic Assay of Inorganic Phosphate with Use of Sucrose Phosphorylase and Phosphoglucomutase. Clin Chem 1992;38:512-5.

17. Weichselbaum TE. An accurate and rapid method for the determination of proteins in small amounts of blood serum and plasma. Am J Clin Path 1946;16: 40-49.

18. Sampson, EJ MA Baird, CA Burtis, EM Smith, DL Witte, and DD Bayse. 1980. A coupled-enzyme equilibrium method for measuring urea in serum: optimization and evaluation of the AACC study group on urea candidate reference method. Clin Chem 26: 816-826.

19. National Committee for Clinical Laboratory (NCCLS). 1984. Procedures for Handling and Processing of Blood Specimens; Tentative Standard. NCCLS document H18-T. Villanova, PA: NCCLS; pp. 219.

20. Moss DW, Henderson AR. 1994. Enzymes. In: CA Burtis and ER Ashwood, eds. Tietz Textbook of Clinical Chemistry, 2nd edition. Philadelphia: WB Saunders Company. 804.