Instruction for Use

SDMA ELISA

Enzyme Immunoassay
 for the Quantitative Determination of Endogenous Symmetric Dimethylarginine (SDMA) in Serum or Plasma

IV D

REF EA203/96

(7) 12×8
$36^{\circ} 2-8^{\circ} \mathrm{C}$

DLD Gesellschaft für Diagnostika und medizinische Geräte mbH
Adlerhorst 15 • 22459 Hamburg • Germany
Tel +49-40-555 8710 • Fax +49-40-555 87111
Internet: http://www.dld-diagnostika.de • E-Mail: contact@dld-diagnostika.de

Contents

1. Introduction and Principle of the Test Page 4
2. Precautions Page 5
3. Storage and Stability Page 5
4. Contents of the Kit Page 5
5. Sample Collection Page 7
6. Preparation of Reagents and Samples Page 7
7. Test Procedure (ELISA) Page 10
8. Calculation of the Results Page 11
9. Assay Characteristics Page 12
10. Literature Page 14
Pipetting Scheme Sample Preparation Page 15
Pipetting Scheme ELISA Page 16

1. Introduction and Principle of the Test

Dosing of most drugs must be adapted in renal insufficiency, making accurate assessment of renal function an essential component of diagnostics in clinical medicine. Furthermore, even modest impairment of renal function has been recognized as a cardiovascular risk factor. As the most commonly used marker of renal excretory function, serum creatinine concentration, does not adequately respond to mild to moderate impairment of renal function, more sensitive markers for renal excretory function are urgently seeked, especially in mild stages of renal impairment. SDMA is a methylated derivative of the amino acid L-arginine (symmetric dimethylarginine). SDMA is eliminated from the body exclusively by renal excretion; therefore SDMA plasma concentration is tightly related to renal function. Thus, quantification of plasma SDMA is an adequate means to assess renal function, as could be demonstrated in a series of recent clinical trials: In 18 clinical studies involving more than 2,100 patients systemic SDMA concentrations were highly correlated with inulin clearance as well as with various clearance estimates and better corresponded to mild renal function impairment than serum creatinine.

Thus, SDMA exhibits properties of a reliable marker of renal function. Furthermore, there is evidence showing that elevated SDMA levels, as they may occur in renal function impairment, may prospectively indicate future risk of cardiovascular disease and mortality independently of the level of renal impairment.

The competitive SDMA-ELISA uses the microtiter plate format. SDMA is bound to the solid phase of the microtiter plate. SDMA in the samples is acylated and competes with solid phase bound SDMA for a fixed number of rabbit anti-SDMA antiserum binding sites. When the system is in equilibrium, free antigen and free antigen-antiserum complexes are removed by washing. The antibody bound to the solid phase SDMA is detected by anti-rabbit / peroxidase. The substrate TMB / peroxidase reaction is monitored at 450 nm . The amount of antibody bound to the solid phase SDMA is inversely proportional to the SDMA concentration of the sample.

2. Precautions

- For in vitro use only.
- Disposable gloves should be used.
- Material of animal origin used in the preparation of the kit has been obtained from animals certified as healthy but these materials should be handled as potentially infectious.

3. Storage and Stability

On arrival, store the kit at $2-8^{\circ} \mathrm{C}$. Once opened the kit is stable until its expiry date. For stability of prepared reagents refer to Preparation of Reagents.
Do not use components beyond the expiration date shown on the labels. Do not mix various lots of any kit component within an individual assay.

4. Contents of the Kit

4.1 MT-Strips

STRIPS
12 strips
8 wells each, break apart precoated with SDMA

4.2 Standards 1-6

CAL 1-6
6 vials
Each 4 ml , ready for use
Concentrations:

Standard	1	2	3	4	5	6
$\mu \mathrm{~mol} / \mathrm{l}$	0	0.2	0.4	0.7	1.2	3.0
$\mathrm{ng} / \mathrm{ml}$	0	40	81	141	242	606

4.3 Control 1 \& 2

CON 1 \& 2
2 vials
Each 4 ml , ready for use
Range: see q.c. certificate

4.4 Acylation Buffer

ACYL-BUFF
1 vial
3.5 ml , ready for use, blue coloured
4.5 Acylation Reagent

ACYL-REAG
3 vials
lyophilised, dissolve contents in 3 ml Solvent before use
4.6 Antiserum
7 ml , ready for use yellow coloured,
Rabbit-anti-N-acyl-SDMA
AS
4.7 Enzyme Conjugate CONJ 1 vial
13 ml , ready for use goat anti-rabbit-lgG-peroxidase
4.8 Wash Buffer WASH 1 vial$20 \mathrm{ml}, 50 \times$ concentrated
Dilute contents with dist. water to 1000 ml total volume.
4.9 Substrate SUB 1 vial13 ml TMB solution, ready for use
4.10 Stop Solution STOP 1 vial
13 ml , ready for use
Contains 0.3 M sulphuric acid, not corrosive
4.11 Reaction Plate ACYL-PLATE 1 piece
for acylation
4.12 Equalizing Reagent EQUA-REAG 1 vial
lyophilised, dissolve contents with 21 ml dist. water, dissolve carefully to minimize foam formation
4.13 SolventSOLVENT2 vials5 ml , contains DMSOPlease note that Solvent reacts with many plastic materialsincluding plastic trays; Solvent does not react with normal pipettetips and with glass devices
4.14 FoilFOIL2 pieces
Additional materials and equipment required but not provided:

- Pipettes (20, 50, 100 and $200 \mu \mathrm{l}$,)
- Multipette
- Orbital shaker
- Microplate washing device
- Microplate photometer (450 nm)
- Vortex mixer, roll mixer

5. Sample Collection

5.1. Serum and Plasma

The test can be performed with serum as well as with EDTA plasma.
Hemolytic and lipemic samples should not be used.
The samples can be stored up to 6 hours at $2-8^{\circ} \mathrm{C}$. For a longer storage (up to 18 months) the samples must be kept frozen at $-20^{\circ} \mathrm{C}$ Repeated freezing and thawing should be avoided.

6. Preparation of Reagents and Samples

6.1. Microtiter strips

STRIPS

Before opening the packet of strip wells, allow it to stand at room temperature for at least 10 minutes. After opening, keep any unused wells in the original foil packet with the desiccant provided. Reseal carefully and store at $2-8^{\circ} \mathrm{C}$.

6.2 Wash Buffer WASH

Dilute the contents with dist. water to a total volume of 1000 ml , mix shortly. The diluted wash buffer must be stored at $2-8^{\circ} \mathrm{C}$ and is stable for 4 weeks. For longer storage the diluted wash buffer has to be stored frozen at $-20^{\circ} \mathrm{C}$.

6.3. Equalizing Reagent EQUA-REAG

Dissolve the contents with 21 ml dist. water, mix shortly and leave on a roll mixer for 20 minutes. Avoid excess formation of foam. The reconstituted Equalizing Reagent should be stored frozen at $-20^{\circ} \mathrm{C}$ and is stable until expiry date.

6.4. Acylation Reagent
 ACYL-REAG

Dissolve the contents of one bottle in 3 ml Solvent and shake for 10 minutes on an orbital shaker. After use the reagent has to be discarded. The Acylation Reagent has always to be prepared immediately before use and is stable for minimum 3 hours. The two other bottles allow a second and third run of the test. If the whole kit is to be used in one run it
is recommended to pool the dissolved contents of the two vials of Acylation Reagent.
Please note that Solvent reacts with many plastic materials including plastic trays which are used as reservoir for multichannel pipettes. Solvent does not react with normal pipette tips and with glass devices. It is recommended to use a multipette, fill it directly from the vial and add the Acylation Reagent to the wells.

All other reagents are ready for use.

6.5. Preparation of Samples (Acylation)

The wells of the reaction plate for the acylation can be used only once. Please mark the respective wells before use to avoid repeated use.

1. Pipette each $20 \mu \mathrm{l}$ standard $1-6$, each $20 \mu \mathrm{l}$ control $1 \& 2$ and each $20 \mu \mathrm{l}$ patient sample into the respective wells of the Reaction Plate.
2. Pipette $20 \mu \mathrm{l}$ Acylation Buffer into all wells.
3. Pipette $200 \mu \mathrm{l}$ reconstituted Equalizing Reagent into all wells.
4. Mix the reaction plate for 10 seconds.
5. Prepare Acylation Reagent freshly and pipette $50 \mu \mathrm{l}$ prepared Acylation Reagent each into all wells, mix immediately. It is recommended to use a multipette, fill it directly from the vial and add the Acylation Reagent to the wells.
Colour changes to violet.
6. Incubate for 20 minutes at room temperature (approx. $20^{\circ} \mathrm{C}$) on an orbital shaker. Do not cover wells or plate, leave the plate open on the shaker.

Take each $20 \mu \mathrm{l}$ of the acylated samples for the SDMA-ELISA.

7. Test Procedure ELISA

Bring all reagents to room temperature and mix them carefully, avoid development of foam.

7.1 Sample Incubation

Pipette each $20 \mu \mathrm{l}$ prepared Standards 1 to $6,20 \mu \mathrm{l}$ prepared controls and $20 \mu \mathrm{l}$ prepared samples into the respective wells of the coated microtiter strips (duplicates are recommended).

Pipette each $50 \mu \mathrm{l}$ Antiserum into all wells.
Cover the plate with adhesive foil and incubate Microtiter Strips for 90 minutes at room temperature $\left(20-25^{\circ} \mathrm{C}\right)$ on an orbital shaker.

7.2 Washing

Discard or aspirate the contents of the wells and wash thoroughly with each $300 \mu \mathrm{l}$ Wash Buffer. Repeat the washing procedure 4 times. Remove residual liquid by tapping the inverted plate on clean absorbent paper.

7.3 Conjugate Incubation

Pipette each $100 \mu \mathrm{l}$ enzyme conjugate into all wells.
Incubate for 30 minutes at room temperature on an orbital shaker.

7.4 Washing

Repeat step 7.2.

7.5 Substrate Incubation

Pipette each 100μ Substrate into all wells and incubate for 25 ± 5 minutes at room temperature on an orbital shaker.

7.6 Stopping

Pipette each $100 \mu \mathrm{I}$ Stop Solution into all wells.

7.7 Reading

Read the optical density at 450 nm (reference wavelength between 570 and 650 nm) in a microplate photometer.

8. Calculation of the Results

On a semilogarithmic graph paper the concentration of the standards (x-axis, logarithmic) are plotted against their corresponding optical density (y-axis, linear). Cubic spline, 4 parameter or similar iteration procedures are recommended for evaluation of the standard curve. The concentration of the controls and samples can be read directly from this standard curve by using their average optical density.

Typical standard curve:

SDMA ELISA

$\begin{array}{cccccc}\mathrm{y}=\left((\mathrm{A}-\mathrm{D}) /\left(1+(\mathrm{x} / \mathrm{C})^{\wedge} \mathrm{B}\right)\right)+\mathrm{D}: & \mathrm{A} & \underline{\mathrm{B}} & \underline{\mathrm{C}} & \underline{\mathrm{D}} & \frac{\mathrm{R}^{\wedge} 2}{1} \\ \text { Concentration vs MeanValue) } & 1,799 & 0,772 & 1,157 & -0,104 & \mathbf{1}\end{array}$
$\begin{array}{llllll}0 \text { Std (Standards: Concentration vs MeanValue) } & 1,799 & 0,772 & 1,157 & -0,104 & 1\end{array}$

Conversion factor: $1 \mu \mathrm{~mol} / \mathrm{l}=202 \mathrm{ng} / \mathrm{ml}=20.2 \mu \mathrm{~g} / \mathrm{dl}$

9. Assay Characteristics

Expected Values (Serum, EDTA-Plasma)

Humans : $0.30-0.75 \mu \mathrm{~mol} / \mathrm{l}(6.0-15 \mu \mathrm{~g} / \mathrm{dl})$
The reference ranges given above should only be taken as a guideline. It is recommended that each laboratory should establish its own reference values.

Sensitivity

$0.03 \mu \mathrm{~mol} / \mathrm{I}$

Recovery

	Range ($\mu \mathrm{mol} / \mathrm{I}$)	Mean (\%)	Range (\%)
EDTA-Plasma	$0.43-1.44$	97	$86-104$
Serum	$0.45-1.72$	93	$88-102$

Linearity

	Range $(\mu \mathrm{mol} / \mathrm{l})$	Highest Dil.	Mean (\%)	Range (\%)
EDTA-Plasma	$0,23-1,72$	$1: 6$ with water	97	$89-105$

Specificity (Cross Reactivity)

Substance	Cross Reactivity (\%)
SDMA	100
ADMA	0.74
NMMA	0.76
Homoarginine	0.04
Arginine	0.01

Reproducibility

	Range $(\mu \mathrm{mol} / \mathrm{l})$	Intra Assay CV
EDTA-Plasma	$0.52-0.82$	$6.2-4.9 \%$

	Range $(\mu \mathrm{mol} / \mathrm{I})$	Inter Assay CV
EDTA-Plasma	$0.52-1.21$	$2.0-8.8 \%$

Method Comparison

	Method	Correlation
Serum / Plasma	LC/MS	$Y=$$0.96 \times \mathrm{LC} / \mathrm{MS}+0.05$ $R=0.987 ; N=32$

10. Literature

Bode-Böger S.M., Scalera F., Kielstein J.T., Martens-Lobenhoffer J., Breithardt G., Fobker M., Reinecke H.
Symmetrical Dimethylarginine: A new combined parameter for renal function and extent of coronary artery disease
J. Am. Soc. Nephrol. (2006) 17: 1128-1134

Kielstein J.T., Salpeter S.R.; Bode-Böger S.M., Cooke J.P., Fliser D. Symmetric dimethylarginine (SDMA) as endogenous marker of renal function - a meta-analysis
Nephrol. Dial. Transplant (2006) 21: 2446-2451

Wanby P., Teerlink T., Brudin L., Brattström L., Nilsson I., Palmqvist P., Carlsson M.
Asymmetric dimethylarginine (ADMA) as a risk marker for stroke and TIA in a Swedish population
Atherosclerosis (2006) 185: 271-277

Pipetting Scheme
 Sample Preparation

	Standard	Control	Sample	
Standard 1-6	$\mu \mathrm{l}$	20		
Control 1 \& 2	$\mu \mathrm{l}$		20	
Patient Sample	$\mu \mathrm{l}$			20
Acylation Buffer	$\mu \mathrm{l}$	20	20	20
Equalizing Reagent	$\mu \mathrm{l}$	200	200	200

shake for 10 seconds

freshly prepared Acylation Reagent	$\mu \mathrm{I}$	50	50	50

incubate for 20 minutes at room temperature on an orbital shaker

Pipetting Scheme ELISA

	Standard	Control	Sample
Standard 1-6	$\mu \mathrm{l}$	20	
Control 1 \& 2	$\mu \mathrm{l}$		20
Patient Sample	$\mu \mathrm{l}$		
Antiserum	$\mu \mathrm{l}$	50	50

cover frame with foil and incubate on an orbital shaker for 90 minutes at room temperature wash 4 x with each $300 \mu \mathrm{l}$ Wash Buffer

Enzyme Conjugate $\mu \mathrm{I}$	100	100	100

incubate for 30 minutes at room temperature on an orbital shaker wash 4 x with each $300 \mu \mathrm{l}$ Wash Buffer

Substrate	$\mu \mathrm{l}$	100	100

incubate for 25 ± 5 minutes at room temperature on an orbital shaker

Stop Solution	$\mu \mathrm{l}$	100	100	100

read absorbance at 450 nm

