

MOUSE/RAT TESTOSTERONE ELISA

Product Data Sheet

Cat. No.: RTC001R

For Research Use Only

Page 1 of 16 ENG.004.A

CONTENTS

1.	INTENDED USE	3
2.	STORAGE, EXPIRATION	3
3.	INTRODUCTION	3
4.	TEST PRINCIPLE	4
5.	PRECAUTIONS	4
6.	TECHNICAL HINTS	5
7.	REAGENT SUPPLIED	6
8.	MATERIAL REQUIRED BUT NOT SUPPLIED	6
9.	PREPARATION OF REAGENTS	7
10.	SPECIMEN COLLECTION AND STORAGE INSTRUCTIONS	7
11.	ASSAY PROCEDURE	8
12.	CALCULATIONS	8
13.	LIMITATIONS	9
14.	PERFORMANCE CHARACTERISTICS	9
15.	EXPECTED NORMAL VALUES	12
16.	REFERENCES	13
17.	REFERENCES	14
18.	EXPLANATION OF SYMBOLS	15

- This kit is manufactured by:
 BioVendor Laboratorní medicína a.s.
- Use only the current version of Product Data Sheet enclosed with the kit!

Page 2 of 16 ENG.004.A

1. INTENDED USE

The BioVendor Mouse/Rat Testosterone ELISA is a competitive immunoassay for the measurement of testosterone in rat and mouse serum or plasma. Do not use in diagnostic procedure. **For research use only**.

2. STORAGE, EXPIRATION

When stored at 2°C to 8°C unopened reagents will be stable until expiration date. Do not use reagents beyond this date. Opened reagents must be stored at 2°-8°C. After first opening the reagents are stable for 30 days if used and stored properly.

Microtiter wells must be stored at 2°C to 8°C. Take care that the foil bag is sealed tightly. Protect TMB-Substrate Solution from light.

3. INTRODUCTION

Testosterone is a steroid hormone from the androgen group synthesized by the Leydig cells in the testes in males, the ovaries in females, and adrenal glands in both sexes. It exerts a wide-ranging influence over sexual behaviour, muscle mass and strength, energy, cardiovascular health and bone integrity.

Testosterone biosynthesis coincides with the spermatogenesis and fetal Leydig cell differentiation in the male rat. Several in vivo models including hormone-suppression, hormone-restoration and hypophysectomy were established for the study of the hormonal regulation of spermatogenesis by testosterone (1-3).

In the Brown Norway rat, serum testosterone levels decrease with aging, accompanied by increases in serum FSH. The capacity of Leydig cells to produce testosterone is higher in young than in old rats (4). Testosterone secreted during late gestational and neonatal periods causes significant brain sexual dimorphism in the rat. This results in both sex-specific behaviour and endocrinology in adults (5).

Analyses concerning the regulation of synthesis reveal that testosterone is able to regulate its own synthesis and indicate that this autoregulation is the result of rapid, specific inhibition by testosterone of 17 alpha-hydroxylase activity (6).

Page 3 of 16 ENG.004.A

4. TEST PRINCIPLE

The BioVendor Mouse/Rat Testosterone ELISA Kit is a solid phase enzyme-linked immunosorbent assay (ELISA), based on the principle of competitive binding. An unknown amount of testosterone present in the sample and a defined amount of testosterone conjugated to horseradish peroxidase compete for the binding sites of testosterone antiserum coated to the wells of a microplate. After one-hour incubation on a shaker the microplate is washed four times. After addition of the substrate solution the concentration of testosterone is inversely proportional to the optical density measured.

5. PRECAUTIONS

- 1. This kit is strictly intended for research use only. Use by staff, who is specially informed and trained in methods which are carried out by use of immunoassays.
- 2. Before starting the assay, read the instructions completely and carefully. Use the valid version of the package insert provided with the kit. Be sure that everything is understood.
- 3. The microplate contains snap-off strips. Unused wells must be stored at 2 °C to 8 °C in the sealed foil pouch and used in the frame provided.
- 4. Pipetting of samples and reagents must be done as quickly as possible and in the same sequence for each step.
- 5. Use reservoirs only for single reagents. This especially applies to the substrate reservoirs. Using a reservoir for dispensing a substrate solution that had previously been used for the conjugate solution may turn solution colored. Do not pour reagents back into vials as reagent contamination may occur.
- 6. Mix the contents of the microplate wells thoroughly to ensure good test results. Do not reuse microwells.
- 7. Do not let wells dry during assay; add reagents immediately after completing the rinsing steps.
- 8. Allow the reagents to reach room temperature (21-26°C) before starting the test. Temperature will affect the absorbance readings of the assay. However, values for the patient samples will not be affected.
- 9. Never pipet by mouth and avoid contact of reagents and specimens with skin and mucous membranes.
- 10. Do not smoke, eat, drink or apply cosmetics in areas where specimens or kit reagents are handled.
- 11. Wear disposable latex gloves when handling specimens and reagents. Microbial contamination of reagents or specimens may give false results.
- 12. Handling should be done in accordance with the procedures defined by an appropriate national biohazard safety guideline or regulation.

Page 4 of 16 ENG.004.A

- 13. Do not use reagents beyond expiry date as shown on the kit labels.
- 14. All indicated volumes have to be performed according to the protocol. Optimal test results are only obtained when using calibrated pipettes and microtiterplate readers.
- 15. Do not mix or use components from kits with different lot numbers. It is advised not to exchange wells of different plates even of the same lot. The kits may have been shipped or stored under different conditions and the binding characteristics of the plates may result slightly different.
- 16. Avoid contact with Stop Solution. It may cause skin irritation and burns.
- 17. Chemicals and prepared or used reagents have to be treated as hazardous waste according to the national biohazard safety guideline or regulation.
- 18. For information please refer to Material Safety Data Sheets. Safety Data Sheets for this product are available upon request directly from BioVendor-Laboratorní medicína a.s.

6. TECHNICAL HINTS

- All reagents and specimens must be allowed to come to room temperature before use. All reagents must be mixed without foaming.
- Once the test has been started, all steps should be completed without interruption.
- Use new disposal plastic pipette tips for each standard, control or sample in order to avoid cross contamination.
- Absorbance is a function of the incubation time and temperature. Before starting the assay, it is recommended that all reagents are ready, caps removed, all needed wells secured in holder, etc. This will ensure equal elapsed time for each pipetting step without interruption.
- As a general rule the enzymatic reaction is linearly proportional to time and temperature.
- For internal quality control we suggest to use **Rat Control Set coded RTC900R**. For more information please contact BioVendor.

Page 5 of 16 ENG.004.A

7. REAGENT SUPPLIED

- **1. Microtiterplate**, 12 x 8 (break apart) strips with 96 wells; Wells coated with anti-testosterone antibody.
- 2. Calibrator 0, 1 vial, 0.3 ml, ready to use
- 3. Calibrator (Calibrator 1-5), 5 vials, 0.3 ml each, ready to use; Concentrations: 0.1 0.4 1.5 6.0 25.0 ng/ml
- **4. Incubation Buffer,** 1 vial 11 ml, ready to use;
- **5. Enzyme Conjugate**, 1 vial, 7 ml, ready to use; Testosterone conjugated to horseradish peroxidise.
- **6. Substrate Solution**, 1 vial, 22 ml, ready to use; contains tetramethylbenzidine (TMB) and hydrogen peroxide in a buffered matrix.
- **7. Stop Solution**, 1 vial, 7 ml, ready to use; contains 2 N Hydrochloric Acid solution.
- **8. Wash Solution**, 1 vial, 50 ml (10X concentrated); see "Preparation of Reagents".

Note: Additional Calibrator 0 for sample dilution is available upon request.

8. MATERIAL REQUIRED BUT NOT SUPPLIED

- Centrifuge
- A microtiter plate reader capable for endpoint measurement at 450 nm
- Microplate mixer operating more than 600 rpm
- Vortex mixer
- Calibrated variable precision micropipettes (10 μl, 50 μl, 100 μl, 200 μl).
- Absorbent paper
- Distilled or deionized water
- Timer
- Semi logarithmic graph paper or software for data reduction

Page 6 of 16 ENG.004.A

9. PREPARATION OF REAGENTS

All reagents should be at room temperature before use.

Wash Solution:

Dilute 50 ml of 10X concentrated *Wash Solution* with 450 ml deionized water to a final volume of 500 ml.

The diluted Wash Solution is stable for at least 3 months at room temperature.

9.1 Disposal of the kits

The disposal of the kit must be made according to the national regulations. Special information for this product is given in the Material Safety Data Sheet.

9.2 Damaged test kits

In case of any severe damage of the test kit or components, BioVendor have to be informed written, latest one week after receiving the kit. Severely damaged single components should not be used for a test run. They have to be stored until a final solution has been found. After this, they should be disposed according to the official regulations.

10. SPECIMEN COLLECTION AND STORAGE INSTRUCTIONS

For determination of rat/mouse Testosterone **serum** and **plasma** can be used. The procedure calls for 10 µl matrix per well. The samples should assay immediately or aliquot and stored at -20°C. Avoid repeated freeze-thaw cycles. Samles expected to contain rat/mouse Testosterone concentrations higher than the highest calibrator (25 ng/ml) should be diluted with the zero calibrator before assay. The additional dilution step has to be taken into account for the calculation of the results.

Please note: The use of plasma as specimen can result in a diminished precision of this assay.

Page 7 of 16 ENG.004.A

11. ASSAY PROCEDURE

Each run must include a standard curve.

- 1. Prepare a sufficient number of microplate wells to accommodate calibrators and samples in duplicates.
- 2. Dispense 10 μI of each Calibrator, Sample and Control with new disposable tips into appropriate wells.
- 3. Dispense 100 µl of Incubation Buffer into each well.
- 4. Add 50 µl Enzyme Conjugate into each well.
- 5. Incubate for **60 minutes** at room temperature on a Microplate mixer.

Important Note:

- Optimal reaction in this assay is markedly dependent on shaking of the microplate!
- 6. Discard the content of the wells and rinse the wells **4 times** with diluted **Wash Solution** (300 µl per well). Remove as much Wash Solution as possible by beating the microplate on absorbent paper.
- 7. Add 200 µl of Substrate Solution to each well.
- 8. Incubate without shaking for **30 minutes** in the dark.
- 9. Stop the reaction by adding **50 μl** of **Stop Solution** to each well.
- 10. Determine the absorbance of each well at 450 nm. It is recommended to read the wells within 15 minutes.

12. CALCULATIONS

- 1. Calculate the average absorbance values for each set of calibrators, controls and patient samples.
- 2. Using semi logarithmic graph paper, construct a standard curve by plotting the mean absorbance obtained from each standard against its concentration with absorbance value on the vertical (Y) axis and concentration on the horizontal (X) axis.
- 3. Using the mean absorbance value for each sample, determine the corresponding concentration from the calibration curve.
- 4. Automated method: The results in the IFU have been calculated automatically using a 4 PL (4 Parameter Logistics) curve fit. 4 Parameter Logistics is the preferred calculation method. Other data reduction functions may give slightly different results.
- The concentration of the samples can be determined directly from this calibrator curve. Samples with concentrations higher than that of the highest calibrator have to be further diluted. For the calculation of the concentrations, this dilution factor has to be taken into account.

Conversion to SI units:

Testosterone (pg/ml) x 3.47 = pmol/l

Page 8 of 16 ENG.004.A

Example of Typical Calibrator Curve

Following data are intended for illustration only and should not be used to calculate results from another run.

Standard	Absorbance Units
Calibrator 0 (0 ng/ml)	2.478
Calibrator 1 (0.1 ng/ml)	2.078
Calibrator 2 (0.4 ng/ml)	1.668
Calibrator 3 (1.5 ng/ml)	1.170
Calibrator 4 (6.0 ng/ml)	0.645
Calibrator 5 (25.0 ng/ml)	0.330

13. LIMITATIONS

Reliable and reproducible results will be obtained when the assay procedure is performed with a complete understanding of the package insert instruction and with adherence to good laboratory practice. Any improper handling of samples or modification of this test might influence the results.

13.1 Drug Interferences

Until now no substances (drugs) are known influencing the measurement of rat or mouse testosterone in serum and plasma. Lipemic and haemolysed samples can cause false results.

PERFORMANCE CHARACTERISTICS

14.1 Analytical sensitivity

The lowest analytical detectable level of testosterone that can be distinguished from the Zero Calibrator is 0.066 ng/ml at the 2SD confidence limit.

Page 9 of 16 ENG.004.A

14.2 Specificity

The following materials have been evaluated for cross reactivity. The percentage indicates cross reactivity at 50% displacement compared to Testosterone.

Steroid	% Cross reaction
Dihydrotestoterone	69.6
Androstenedione	< 0.1
Androsterone	< 0.1
Epiandrosterone	< 0.1
Dihydroandrosterone	< 0.1
Dihydroxyandrosterone	7.4
Estron	< 0.1
Estradiol	< 0.1
Estriol	< 0.1
Cortisol	< 0.1
11-Deoxycortisol	< 0.1
Progesterone	< 0.1
170H-Progesterone	< 0.1

14.3 Reproducibility

14.3.1 Intra-Assay (n=20)

The intra-assay variation was determined by 20 replicate measurements of 3 serum samples within one run. The within-assay variability is shown below:

Mean (ng/ml)	3.23	1.44	0.84
SD	0.21	0.12	0.09
CV (%)	6.50	8.06	11.07
n =	20	20	20

14.3.2 Inter-Assay (n=10)

The inter-assay (between-run) variation was determined by duplicate measurements of 3 serum samples over 10 days.

Mean (ng/ml)	0.29	1.23	9.50
SD	0.03	0.11	0.88
CV (%)	11.3	9.3	9.3
n =	10	10	10

Page 10 of 16 ENG.004.A

14.4 Recovery

Using the Rat Testosterone Calibrator Matrix three spiking solutions were prepared (A = 50 ng/mL, B = 100 ng/mL and C = 150 ng/mL). A 25 µL aliquot of each solution was spiked into 475 µL of six different rat sera with low testosterone concentrations for a spiking ratio of 1 to 20, leaving the serum matrix of the spiked samples relatively intact. All samples were then measured by the Rat Testosterone ELISA procedure. To calculate expected values 95% of the unspiked values were added to 5% of the spiking solution concentrations (2,5, 5 and 7,5 ng/mL, respectively).

Serum	Spiking Solution	Observed (0)	Expected (E)	O/E %
	-	0,31	-	-
1	Α	3,15	2,81	112%
I	В	5,11	5,31	96%
	С	7,27	7,81	93%
	-	0,40	-	-
	Α	3,42	2,90	118%
2	В	5,88	5,40	109%
	С	7,90	7,90	100%
	-	0,36	-	-
3	Α	2,88	2,86	101%
3	В	5,50	5,36	103%
	С	7,50	7,86	95%
	-	0,25	-	-
4	Α	2,65	2,75	96%
4	В	4,65	5,25	89%
	С	7,08	7,75	91%
	-	0,38	-	-
5	Α	3,17	2,88	110%
5	В	4,79	5,38	89%
	С	7,36	7,88	93%
	-	0,28	-	-
6	Α	2,78	2,78	100%
	В	4,61	5,38	86%
	С	7,22	7,78	93%

Page 11 of 16 ENG.004.A

14.5 Linearity Five native serum samples were assayed undiluted and diluted with the calibrator matrix.

Serum	Dilution	Observed (0)	Expected (E)	O/E %
	native	2.54	-	-
3	1 in 2	1.22	1.27	96%
J	1 in 4	0.61	0.64	95%
	1 in 8	0.34	0.32	106%
	native	1.85	-	-
15	1 in 2	0.86	0.93	92%
15	1 in 4	0.43	0.46	93%
	1 in 8	0.21	0.23	91%
	native	1.94	-	-
17	1 in 2	1.04	0.97	107%
17	1 in 4	0.52	0.49	106%
	1 in 8	0.26	0.24	108%
	native	0.75	-	-
21	1 in 2	0.45	0.38	118%
21	1 in 4	0.18	0.19	95%
	1 in 8	0.09	0.09	100%
	native	1.35	-	-
0	1 in 2	0.75	0.68	110%
9	1 in 4	0.30	0.34	88%
	1 in 8	0.13	0.16	81%

15. EXPECTED NORMAL VALUES

In order to determine the normal range of serum testosterone in rat, samples from 35 male rats and 20 female rats were collected and analyzed using the BioVendor Testosterone rat/mouse ELISA kit. The following ranges are calculated with the results of this study.

	Range (ng/ml)	Mean (ng/ml)
Male ♂	0.66 - 5.4	3.06
Female ♀	0.11 – 0.31	0.21

Page 12 of 16 ENG.004.A

In further studies serum samples of 10 mice were collected between 11.00 am and 3.00 pm und analyzed in a similar manner.

	Range (ng/ml)	Mean (ng/ml)
Male mice ♂	1.7 – 14.4	6.78

It is recommended that each laboratory establish its own normal range since testosterone levels can vary due to handling and sampling techniques.

16. REFERENCES

16.1 Reliability of results

The test must be performed exactly as per the manufacturer's instructions for use. Moreover the user must strictly adhere to the rules of GLP (Good Laboratory Practice) or other applicable national standards and/or laws. This is especially relevant for the use of control reagents. It is important to always include, within the test procedure, a sufficient number of controls for validating the accuracy and precision of the test.

The test results are valid only if all controls are within the specified ranges and if all other test parameters are also within the given assay specifications. In case of any doubt or concern please contact BioVendor.

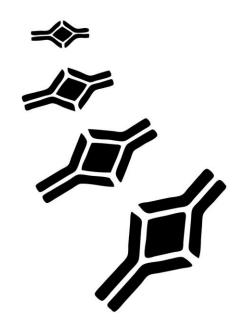
16.2 Liability

Any modification of the test kit and/or exchange or mixture of any components of different lots from one test kit to another could negatively affect the intended results and validity of the overall test. Such modification and/or exchanges invalidate any claim for replacement.

Regardless, in the event of any claim, the manufacturer's liability is not to exceed the value of the test kit. Any damage caused to the test kit during transportation is not subject to the liability of the manufacturer.

Page 13 of 16 ENG.004.A

17. REFERENCES


- 1. Huang HF, Marshall GR, Rosenberg R & Nieschlag E (1987): Restoration of spermatogenesis by high levels of testosterone in hypophysectomised rats after long-term regression. *Acta Endocrinologica* **116**, 433–444.
- 2. Sun YT, Irby DC, Robertson DM & de Kretser DM (1989): The effects of exogenously administered testosterone on spermatogenesis in intact and hypophysectomized rats. *Endocrinology* **125**, 1000–1010.
- 3. O'Donnell L, McLachlan RI, Wreford NG & Robertson DM (1994): Testosterone promotes the conversion of round spermatids between stages VII and VIII of the rat spermatogenic cycle. *Endocrinology* **135** 2608–2614.
- 4. Zirkin BR & Chen H. (2000): Regulation of Leydig cell steroidogenic function during aging. *Biol. Reprod.* **63**(4): 977-81
- 5. Sakuma Y (2009): Gonadal steroid action and brain sex differentiation in the rat. *J. Neuroendocrinol.* **21** (4): 410-4
- 6. Darney KJ Jr, Zirkin BR, Ewing LL (1996): Testosterone autoregulation of its biosynthesis in the rat testis: inhibition of 17 alpha-hydroxylase activity. J. Androl. 17 (2): 137-42
- 7. Moore AM, Prescott M, Campbell RE (2013): Estradiol negative and positive feedback in a prenatal androgen-induced mouse model of polycystic ovarian syndrome. *Endocrinology*, February 2013, 154(2): 796-806
- Niakani A, Farrokhi F. and Hasanzadeh S (2013): Decapeptyl ameliorates cyclophosphamide-induced reproductive toxicity in male Balb/C mice: histomorphometric, stereologic and hormonal evidences. *Iran J Reprod Med* Vol.11 No.10. pp: 791-800, October 2013
- 9. Clarkson J, Busby ER, Kirilov M, Schütz G, Sherwood NM and Herbison AE (2014): Sexual differentiation of the brain requires perinatal Kisspeptin-GnRH Neuron Signaling. *The Journal of Neuroscience*, November 12, 2014, 34(46): 15297-15305
- 10. Slimen S, Saloua EF, Najoua G (2014): Oxidative stress and cytotoxic potential of anticholinesterase insecticide, malathion in reproductive toxicology of male adolescent mice after acute exposure. *Iranian J Basic Med Sci*, Vol 17, No 7, Jul 2014
- 11. Zhu W, Liu P, Yu L, Chen Q, Liu Z, Yan K, Lee WM, Cheng CY and Han D (2014): p204-Initiated innate antiviral response in mouse Leydig cells. *Biology of Reproduction* (2014) 91(1):8, 1-9
- 12. O'Hara L, McInnes K, Simitsidellis I, Morgan S, Atanassova N., Slowikowska-Hilczer J, Kula K, Szarras-Czapnik M, Milne L, Mitchell RT and Smith LB (2015):Autocrine androgen action is essential for Leydig cell maturation and function, and protects against late-onset Lexdig cell apoptosis in both mice and men. The FASEB Journal, Vol.29, March 2015
- 13. Schellino R, Trova S, Cimino I, Farinetti A, Jongbloets BC, Pasterkamp RJ, Panzica G, Giacobini P, DeMarchis S and Peretto P (2016). Opposite-sex attraction in male mice requires testosterone-dependent regulation of adult olfactory bulb neurogenesis. *Scientific Reports* / 6:36063/DOI:10.1038/srep36063
- Soylu-Kucharz R, Baldo B and Petersén A (2016): Metabolic and behavioural effects of mutant huntingtin deletion in Sim1 neurons in the BACHD mouse model of Huntington's disease. Scientific Reports / 6:28322/DOI: 10.1038/srep28322

Page 14 of 16 ENG.004.A

18. EXPLANATION OF SYMBOLS

Symbol	English
(€	European Conformity
(Ii	Consult instructions for use
IVD	In vitro diagnostic device
RUO	For research use only
REF	Catalogue number
LOT	Lot. No. / Batch code
Σ	Contains sufficient for <n> tests/</n>
\triangle	Note warnings and precautions
1	Storage Temperature
\square	Expiration Date
***	Legal Manufacturer
Distributed by	Distributor

Page 15 of 16 ENG.004.A

BioVendor - Laboratorní medicína, a.s.

Karasek 1767/1, 621 00 Brno, Czech Republic Phone: +420-549-124-185, Fax: +420-549-211-460 E-mail: info@biovendor.com, sales@biovendor.com

Web: www.biovendor.com

There are BioVendor branches and distributors near you. To find the office closest to you, visit **www.biovendor.com/contact**

Page 16 of 16 ENG.004.A